Graphical Multiagent Models ( Extended
نویسنده
چکیده
I introduce a graphical representation for modeling multiagent systems based on different kinds of reasoning about agent behavior. I seek to investigate this graphical model’s predictive and representative capabilities across various domains, and examine methods for learning the graphical structure from agent interaction data. I also propose to explore the framework’s scalability in large real-world scenarios, such as social networks, and evaluate its prediction performance with existing network behavior models.
منابع مشابه
Learning and Predicting Dynamic Behavior with Graphical Multiagent Models
Factored models of multiagent systems address the complexity of joint behavior by exploiting locality in agent interactions. History-dependent graphical multiagent models (hGMMs) further capture dynamics by conditioning behavior on history. We propose a greedy algorithm for learning hGMMs from time-series data, inducing both graphical structure and parameters. To evaluate this learning method, ...
متن کاملLearning and Predicting Dynamic Network Behavior with Graphical Multiagent Models
Factored models of multiagent systems address the complexity of joint behavior by exploiting locality in agent interactions. History-dependent graphical multiagent models (hGMMs) further capture dynamics by conditioning behavior on history. The hGMM framework also brings new elements of strategic reasoning and more expressive powers to modeling information diffusion over networks. We propose a ...
متن کاملGraphical Multiagent Decision Model: Towards Adaptability
Multiagent decision making is a typical decision problem in the changing world. We propose a new framework, including multiply sectioned influence diagrams (MSID) and hyper relevance graph (HRG), to represent this large and complex decision problem involving multiple agents. An MSID is an agency graphical language for representing decision problems in a distributed fashion while an HRG expresse...
متن کاملFast Solving of Influence Diagrams for Multiagent Planning on GPU-enabled Architectures
Planning under uncertainty in multiagent settings is highly intractable because of history and plan space complexities. Probabilistic graphical models exploit the structure of the problem domain to mitigate the computational burden. In this paper, we introduce the first parallelization of planning in multiagent settings on a CPU-GPU heterogeneous system. In particular, we focus on the algorithm...
متن کاملImproved Planning for Infinite-Horizon Interactive POMDPs using Probabilistic Inference (Extended Abstract)
We provide the first formalization of self-interested multiagent planning using expectation-maximization (EM). Our formalization in the context of infinite-horizon and finitely-nested interactivePOMDP (I-POMDP) is distinct from EM formulations for POMDPs and other multiagent planning frameworks. Specific to I-POMDPs, we exploit the graphical model structure and present a new approach based on b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010